MicroStream MicroStream on Tour 2021

JUG
Gorlitz

Ultraschnelle Java In-Memory Datenbank-Anwendungen &

Microservices mit MicroStream

((‘D MicroStream

Disclaimer

The following is intended to outline our general product direction. It's intended for
informational purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any
features or functionality described for MicroStream’s products remains at the sole
discretion of MicroStream.

Markus Kett

CEO at MicroStream,

Contributor to Project Helidon (Oracle)
Editor in Chief at JAVAPRO Magazine
Organizer JCON Conference
Conference Speaker

Twitter: @MarkusKett
LinkedIn: markuskett
Email: m.kett@microstream.one

@ MicroStream

Qb _)
=(rapDclipse

3
JPA-SQL

JAVAPRO

Challenges with database programming in Java
Java in-memory processing approach
MicroStream persistence

MicroStream highly secure serialization
MicroStream JCache

Q&A

Developérs Love

OoOoP
Type-safty

Abstraction

Standards

Avoid depencencies - P 3
Elegant object models

Good tested code
Clean code -
Freedoms

B £ o
"
'S

Outdated Time Expensive
Consuming

Traditional Java Persistence

Java object graphs and RDBMS
tables are incompatible.

Impedance Mismatch!

Granularity mismatch

Application

Subtypes mismatch

> Identity mismatach
- Associations mismatch
Javavh Data Navigation mismatch

Data type differences

I {
RDBMS

Modern NoSQL

Application

.~ :_;:Z,_’
Object Graph (RAM) |* UGSt
. .,"' PR =

EVERY

NoSQL

Key-Value
IKEY| —» (VALUE
1 b Column
(Kev] ——» [VALUE JSON
| KEY| —— [VALUE
(kev) —> (wvE Graph
IKEY| —% | VALUE
IKEY| ——» | VALUE
(KEY| —— [VALUE
| KEY | — | VALUE
(Kkev) —> (vae

ALL NoSQL data structures are also
incompatible with Java object graphs. Even
OO and Graph DBs are incompatible with
Java object graphs. Impedance Mismatch!

OR-Mapping / Data Conversion

Objects

Application Challenge: Storing Objects into
Tables / JSON / Key Value Stores / Graphs
Object Graph (RAM) '

Key-Value
&0 —» @AWETD Colymn

[T — (vawve] JSON
[KeY] — [vaLve | Graph

OR-Mapping / Data Conversion

(KEY) —» (vave |
. I KEY| — (VALUE) \
- ke — vmE |
JavaVM NoSQL v

= Requires lots of CPU power
» Reduces your performance

i Tables = Expensive latencies (mapping + network)

E}E“{t{ﬂ% = Complex architecture

= ﬂiﬁ = Expensive development process

L L i . o o o

= = g\ » Inefficient concept requires expensive
RDBMS

cluster infrastructure
= Increase your costs of infrastructure

Caching (Local Cache)

Application

OR-Mapping / Data Conversion

Local Cache

Key-Value

T
UL

358533

Objects

NoSQL

RDBMS

Key-Value
(KEY] —> (VALUE
1 b 1 Column
(keY] —» [VALUE] JSON
| KEY | —— | VALUE |
(¥e¥] —> (wae | Graph
IKEY| —% | VALUE)
[KEY] — [VALUE
(KEY] ——# [VALUE
| KEY | — | VALUE
(Kkev) —> (vae

Even though reading data
from a local cache,
H{ET = mapping/conversion is
. required.

In-Memory Database

Tables
:I‘:E"-:w {E
- = = ==
Application .
Objects = = _L
. Key-Value
Object Graph (RAM) ' * (&) — (JALE Column
0 — (o JSON
G omm Graph
IE\ —— [vaLue |
| KEY | * VALUE
[KEY —» _\IAI.I.E
appin ——— \
Local Cache RAM
JavaVM DBMS

Running the entire DB in RAM sounds
incredibly fast, but the network latencies
and required mapping/converstion after
all will vaporize your performance again. In-Mermory Database
Thus, the efficiency is relatively low.

e
Key-Value

'Elg’ VALUE Column

| KEY | — VALUE

(kY] —» VALUE JSON

[domy) —» [waie) Graph

| KEY | + VALUE

IKEY) — % (VALUE | .

IKEY > [VALUE

[KEY | — [VALUE

| KEY | — [VALUE

| KEY | — VALUE

Conventional Database
Persistence

Distributed Applications with In-Memory Database

Objects

Distributed Application

High complex and expensive architecture

In-Memory Database

Tables

LGREIT
Column
JSON
Graph

RAM

DBMS

Tables

e
|;"A|—{:;|}—| |
T = |
-

Key-Value
G& > GAETD Column

I®EY) » [VALUE
| KEY | * VALUE
I KEY] » | VALUE

Conventional Database
Persistence

Distributed Cache / In-Memory Data Grid (IMDG)

Application

Object Graph (RAM) ' * E%EEE IKEY-Value
OR-Mapping / EE EE \
Data Conversion
Local Cache
Storing all data in RAM sounds incredibly
fast, but the network latencies and
required mapping/converstion after all it I
istributed Cach / In-Memory Data Gri — - -
will vaporize your performance again. I . T
=]

Persistence

Thus, the efficiency is relatively low. I .

Distributed Application with Distributed Cache / IMDG

High complex and expensive architecture

. Key-Val
|KEY —» [VALUE
(KEY) —»

(KEY| ——»

(KEY] —>

(KEY) —>

(KEY] —>

| KEY| —# [VALUE |
(KEY) —# [VALUE |
(KEY¥) — (VALUE]
(KEY| —» [VALUE)

In-Memory Data Grid

Distributed Application with Event Streaming (Kafka)

High complex and expensive architecture

KEY| — | VALUE JSON
(KEY| — | VALUE

[KEY| — [VALUE e
| KEY | — | VALUE

= * [VALUE

IKEY| —% (VALUE |

IKEY] VALUE

(KEY| — [VALUE

| KEY | — | VALUE

(KeY| — [vaLuve

RAM

Microservice Architecture

Kubernetes

Distributed Cache ‘

In-Memory Data Grid
In-Memory Database

Conventional Database
Persistence

The Problem of Incompatible Data Structures
is Well Known as Impedance Mismatch

There are various solutions, but they are only a
more or less elegant way around the problem. No

matter which solution you choose - as long as the
}KIK}EPERIQA‘ systems are different, every developer will
sooner or later get to the point where his solution
no longer meets one or more of the following
points: Maintainability, performance,
intelligibility.

(@

Data type mappi
sompg ng ORM f
Additional cach

; 1

orks *
ayers (local Cache, distribum -
Complex architecture

Strong limitations (data model design)
Mixing different paradigm,munta'htly and
Heavyweight dependencies -
Effortful testing and deployment process

MicroStream

Further Challanges

(@

Microservices vs. Database Server
Does that fit together?

Microservice Architecture

Monolithic Database Server

DDD Requires Multiple Data Models
Multiple DBMS multiple the complexity, effort and costs.

Relational DB Column DB

Graph DB

Competing Concepts

Data structure (object graphs)

JR— Business logic (classes, objects, methods, etc.)

Concurrency (sessions, connections, caching, etc.)

Object Graph (RAM) User management

|O (e.g. REST)

JavaVM
Data structure (tables & relations)

Business logic (trigger, SP, SF, Views, PL-SQL, etc.)
Tables
ww Concurrency (sessions, connections, caching, etc.)

1
- /
|

r
L

/

g

User management

RDBMS

10

Storage engine (write, read, caching, backup etc.)

Competing Concepts

In Java we already abstract the DB and ignore many native DB features.

Application

Object Graph (RAM)

OR-Mapping /
Data Conversion

EVERY

Data structure (object graphs)

Business logic (classes, objects, methods, etc.)

Concurrency (sessions, connections, caching, etc.)

1O (e.g. REST)

Data structure (tables & relations)
Business logic (trigger, SP, SF, Views, PL-SQL, etc.)
Concurrency (sessions, connections, caching, etc.)

User management

Storage engine (write, read, caching, backup etc.)

Microservices & Hibernate
Does that fit together?

Microservice Architecture

www.microstream.one (C)

Ultra-fast
Java In-Memory Data Processing

Java is Perfect for High-Performance
In-Memory Data Processing

App / Microservice

Object graph: multi-model data structure
« o thatsupports any Java type

Data model: Java classes only - database-specific
data models are not needed at all

Object Graph
Query language: searching object graphs
in-memory with Java Streams or GraphQL

enables queries in microseconds MicroStream

Pure Java, fully object-oriented, typesafe,

elegant programming model JavaVM /

Native Image /

Android

MicroStream: persisting any object graph
into any storage solution

* Incredible in-memory high-performance

([

MicroStream Persistence

MicroStream History

Company
founded

2019
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Development
started
2013

MicroStream will be Integrated and
Delivered with Microservices Frameworks

>4 helidon.io & Open Liberty

% helidon.io

Our Partners

€-0penliberty £ payara’

J[, MicRO

azul

\\\I { - - W
=" rapDClipse

Allianz ()

Some of our Customers

—
BAHN A Crrankturt Port of Hamburg

Airport

EUROPA /
MOBEL | VERBUND

www.microstream.one (6)
Old Java Developer's Dream

Application

Loading only single objects or subgraphs on-
demand and updating the object graph
automatically, is not covered by the Java
serialization. Additionally, Java serialization is
limited and slow. Beyond serialization, there
are numerous challenges in terms of
persistence that are not covered by Java
serialization.

Object Graph (RAM) = * %

Java Serialization

EVERY

Hard Disk

www.microstream.one (C)

MicroStream Makes the Old
Java Developer's Dream Come True.

What is MicroStream ?

MicroStream Object-Graph
Communication & Synchronization

MicroStream Storage Browser

REST Interface
Legacy Type Mapping

MicroStream Persistence for Android

MicroStream Persistence for the JVM

MicroStream Serialization

File System Garbage Collector

File System Abstraction

Database Connectors

Backup

(@

Platforms

Get MicroStream for ‘ Get MicroStream for

MicroStream for Cloud-Native Microservices MicroStream for Mobile,
and Classic Java Enterprise Applications. Embedded and, Edge Devices.

MicroStream Persistence

In-Memory DB / Grid
Distributed Cache

Event Streaming (Kafka)
Binaries

Object:
Application jects

Object Graph (RAM)

MicroStream

FEVERY

NoSQL
Binaries
Objects
¥
SRS
S 7S
<X RDBMS
o . o
Binaries

Objects

Objects

Streaming Objects
Directly Into any Database

.

.

= Simple architecture

= Faster time to market

= Saves lots of vCPU power

= Minimizes latencies

* In-memory queries executed in
microseconds

= Saves up to 92% costs of infrastructure

ORACLE
DATABASE

ORACLE
TIMESTEN

. mongoDB

Supported Storages

RDBMS
m PostgreSQL
MysSaL @ ° MariaDB
NoSQL
i ' = ORACLE
e redis §€ kafka a .
Coherence

hazelcast

Cloud Object Store

. ORACLE
sg'glsgélocg;l’ S3 Microsoft Azure —

amazon
DynamoDB

ORACLE
NOSQL DATABASE

%QLite

(@
Accelerating Queries up to 1000x

Query: Revenue of the whole shop

I 0.19 ms

Live-Demo: www.microstream.one

Runs Wherever Java Runs

Desktops On-Premise Cloud Container

Native Image Microservices Android JDK 8+

(1

Use any JVM Technology

Graal K Kotlin & Scala

e

Your Benefits

Performance Enables Revolutionary
New Innovations, Features
and Products

. Today - Al, ML, loT, Automotive

‘ 2007 - The Smartphone

1983 - The Graphical User Interace

1976 - The Personal Computer

‘ 1960s - The Main Frame MicroStream

Save up to 90% Cloud Costs roday with Microstream:

Traditional Persistence Is - 8 7 e 5 /o

Inefficient. Numerous of Nodes Costs of Infrastructure
are Required. annually

NoSQL

Only 1 Node! *

Conventional Cluster for Running a globally App RDBMS

Simplifies your Development Process

1data structure *
1data model - Java classes only

No mapping, no impedance mismatch
No JPA

Query language: Java Streams API
No local cache needed

® WOFO"S
2 qariag I = WS
te el
"";“-“ string Hello
{

gLy = vevwi}

} 2 pool
return -\'ﬁ“,"..\—-. S opartyCr nf""“‘“m<b (
setl _he vewModeisM Not ¢ Sd‘r.f 1 storages

™ . =
Ts!‘r‘inq propertyNane

get {
set {

No dependencies, no special superclass or
interfaces, no annotations, just POJOs

Freely design of your Java object-model
Core Java only

How Does MicroStream Work ?

(@

Data Model: Just POJOs

public class Customer {

private String firstname;

private String lastname;
private String email;

private LocalDate dateOfBirth;
private Boolean active;
private Set<0Order> orders;

5{,. Data model:
L~ Java classes only

Y Use existing classes as they
are, no strings attached

Design your object model
freely without any limitations

No dependencies,
just use POJOs

Any Java types 5} !
are supported

Using inheritance is
trouble-free

No need for special superclasses,
interfaces or annotations

Use any types
from 3rd party APls

Migrating to MicroStream
is trouble-free

(@
Design Your Object Graph Completely Freely

= Use any Java type

= Use collections

= Use object references
= Use circle references

= Use any object from 3rd party libraries o Oo

Persisting Objects

DataRoot root = microstreamDemo.root();

root.getCustomers().add(customer);

microstreamDemo.store(root.getCustomers());

Store any single object or
subgraph explicitly

Binary data format,
no expensive mappings

Append-only
log strategy

Custom-tailored type handling
for best performance

Store any Java type, any
suited type is supported

Atomic operation and
ACID transaction-safe

Multithreaded write ops
for max performance

Replaces 3 CRUD ops:
Create, Update & Delete

Using inheritance
is trouble-free

Strong
consistency

Gigantic
data throughput

Loading Objects Dynamically Into RAM

public class Customer {

private Lazy<Set<Order>> orders;

public Set<Order> getOrders() {
return Lazy.get(this.orders);

1

public void getOrders(final Set<Order> orders) {
this.orders = Lazy.Reference(orders);

¥

Sufficient RAM available: }-'._‘ '_;'3 . RAM limited: Load single objects ~
Restore the entire object-graph ~ % orsubgraphs on-demand ¢ ©
.7. Noinconvenient [No more classic selects, 6

object copies

Multithreaded read ops _ Gigantic
for max performance " data throughput

ol

simply call getter —

Loaded objects are merged into
the object graph automatically

Minimizing expensive
10 ops

Queries

public static void booksByAuthor()

final Map<Author, List<Book>> booksByAuthor =
ReadMeCorp.data().books().stream()
.collect(groupingBy(book -> book.author()));

booksByAuthor.entrySet().forEach(e -> {

System.out.println(e.getKey().name());
e.getValue().forEach(book -> {
System.out.print('\t');
System.out.println(book. title());
});
1;

‘5.-:‘;..1,‘_ Core Java instead of database ¢ Queries are executed in-
L~} query languages . memory
No network bottlenecks, il Type-safe, clean and great

no latency. 7 testable code

III; 6“‘1

Microsecond Query-Time
with Java Streams API

Simultaneously query execution
with Parallel Streams

Minimizing expensive
10 ops

>,
Memory Management

= Memory is fully managed by the JVM

= Use lazy references if possible

= Clear your lazy references which are not used anymore

= [n case of garbage collector issues, try OpenJ9 or Azul JVM

Full In-Memory vs. Lazy-Loading

Application

256 GB RAM

MicroStream

NEVERY

You can load your whole DB into RAM
Pure in-memory computing

No latencies

Super fast

Lower startup time

age IS bigger than RAM.:

Application

32 GBRAM

MicroStream

EVERY'

Preload most important data only (eager loading)
Use lazy-loading to load data on demand only
Clear lazy references which are not used anymore
Faster startup time

Note: Your Object Graph is Your In-Memory Database

Database Server Paradigm

Application
Application
. ™ - r
Object Graph (RAM) . . P Object Graph (RAM)
L e + o o
. - = » - -
o®
JPA]

MicroStream

EVERYA

Database Server Java Vi Any DBMS / Plain Files

|‘|"r

G

iy

MicroStream Features

Tiny Java Library

MicroStream is a tiny Java library
without any dependencies wihch you
can download via Maven. It runs within
your app's JVM process.

No Annoying Restrictions

No need for special superclasses,
interfaces such as Serializable,
annotations or any other internal
configurations. Just use POJOs.

ACID Transaction-Safty

Any meaningful Java types can be
persisted. Storing any types from 3rd
party APls is trouble-free,

.o_.

=y

O Data Model: Java Classes Only

Only 1 data model: Java classes. No
more specific database model. No
expensive mappings or data
conversion. Design your model freely.

Store Any Java Type

Any meaningful Java types can be
persisted. Storing any types from 3rd
party APIs is trouble-free.

Append-Only Log

Each store operation adds the objects
appended to your storage by using a
binary data format for best
performance.

Fal
A

__J

Multi-Model Data Structure

A Java object graph is by nature a
multi-model data structure. You can
add any object, lists and other
collections, key-value pairs as well as
any document.

Dynamic Store Ops

Store any single ohject, any subgraph,
or the complete object graph by calling
only one store method. In any case,
only the delta will be stored.

> Lazy-Loading

Each store is an atomic operation,
ACID transaction-safe, and strong
consistent.

‘;Hg No Object Copies

Loaded objects are fully automated
merged into your object graph. You
don't have to deal with inconvenient

object copies and persistent contexts.

Q Memory Management

With MicroStream, RAM is still fully
managed by the JVM, but you can
remove lazy-loaded references at any
time to free up RAM.

. Storage Garbage Collector

Legacy and corrupt objects in the
storage are removed by the
MicroStream garbage collector
automatically through the runtime.

—1 Backup

Reliable and fully individual
configurable data backup processes.
Alternatively, you can use the backup
function of your database.

/f) Queries: Streams & GraphQL

The Java Streams APl enables you to
search even huge and complex object
graphs in memory in microsecond
guery time.

= Multithreaded 10 Ops

By using channels, 10 operations will
be executed multithreaded which
increases the performance of your
application.

Q REST Interface

MicroStream provides you a REST API
that enables remote access to your
persistent storage data.

Simple Migration

Both, migrating the data to or away
from MicroStream is simple by using
CSV import/export.

gmp‘,

&

-

il

No Classic Selects, Just Getter

Loaded objects are fully automated
merged into your object graph. You
don't have to deal with inconvenient
object copies and persistent contexts.

Class Change Handling

Different versions of your classes are
handled automatically through the
runtime. No refactorings required.

Storage Viewer

MicroStream comes with a web
interface that allows you to browse
through your persistent storage data.

Runs Wherever Java Runs

MicroStream runs on desktops, on the
server, in containers, in the cloud, on
mobile & edge devices, as a native
image & is pferfect for microservices.

Use Powerful Features From the Java Ecosystem

= .

Fulltext Search

Apache Lucene is a powerful search
engine for Java. Lucene allows you to
add such as full-text search to your
MicroStream app.

J9

Manage Big RAM Sizes

Eclipse OpenJ9 is a very powerful open
source JVM optimized for big RAM
sizes and providing 63% less memory
footprint.

azul

Manage Terabyte RAM Sizes

Azul's JVM Platform Prime minimizes
garbage collection pause time and
enables your Java app to handle sdfs d
Terabyte RAM size trouble-free. dg dg f

MicroStream Serialization

(@

')3
h IEVERLGEHTE L RYER
a horrible Mistake. 99

Mark Reinhold
Chief Architect of the Java Platform

o

Serialization was a horrible mistake.
Half of all Java vulnerabilities are linked to serialization.

Mark Reinhold
Chief Architect of the Java Platform at Oracle

77 77

Java's serialization makes nearly every mistake Other encoding (JSON, XML, Protocol Buffers,
imaginable and, poses an ongoing tax for library etc.) is obscure and inefficient. Switching to
maintainers, language developers, and users. another encoding doesn't solve the main problem
of serialization.
Brian Goetz
Architect of the Java Language at Oracle Brian Goetz

Architect of the Java Language at Oracle

Java Serialization

ﬁ High-Security Risk

= (Class information are transferred to the receiver

Sender

= All serializable classes in the classpath are executed
automatically through deserialization

e = Creating and injecting malicious code is scarily easy

LT = Maost of your dependencies use serialization

= Using simplistic black- and white-list techniques

Serializable Objects are insufficient.

Application / Microservice

Java Serialization

FEVERY [’

Serializable Objects a I-l m |tat|0n5

= Classes must implement the interface
java.io.Serializable

o Java Serialization -
’ Deserialization = Objects from 3rd party APIs that haven't implemented

JavaVM Serializable can't be serialized

= After deserialization you get an object copy in any case
= Keeping your object graph synchronous is not possible

= Java serialization is slow

MicroStream Serialization

Sender

Application / Microservice

Receiver

Object Graph (RAM)

Application / Microservice

J VM
ava Object Graph (RAM)

JavaVM

MicroStream Object Graph Synchronization

..| '
-* s

: . ‘Q\..’-.. '. ..o-. " -
4 - . L -
i~ e . S o
« e . .
A 9 o *, > et
. . S et .
.
» - P
‘I- .

-

o XU T,

. - > P p ‘
Client E
Client
@ > o >
s Bt

»® . ..
. . \~',r' .
e

Client
Client

MicroStream JCache

(@

MicroStream JCache

JPA

MicroStream JCache

EVERY

RDBMS

MicroStream is JCache-compatible
and can be used as a local cache for
your JPA application.

Get Started with MicroStream

Download: www.microstream.one
Docu: https://manual.docs.microstream.one/data-store/getting-started
Videos on YouTube: https://www.youtube.com/c/MicroStream/videos

www.youtube.com/c/MicroStream/videos

(C MicroStream ABONNIERT ()
. 102 Abonnenten

UBERSICHT VIDEOS PLAYLISTS KANALE DISKUSSION KANALINFO Q >

Uploads ALLE WIEDERGEBEN = SORTIEREN NACH

= MicroStream Hackathon Winners =2 MicroStream Hackathon Winners =2 MicroStream Hackathon Winners =2 MicroStream Hackathon Winners

Helidon + Loom

‘15t Rank + ‘2nd: “3rd Rank ‘4rd Rank + WS &
Ja r Antd Helidon Award tps//hackathon microstream.one
Alexan Flosian Kabermann Oheistian Kusmmel Peter Nagy
@ wcremremn Grastu s beidenis’ 51 23°50 W oo GraslVM i heidenis | 1:02:00
$7,500 and GraalVM Award $3,000 and 2nd Rank Winner $2,000 and 3rd Rank Winner $2,500 and Helidon Award MicroStream Deep Dive Heldion with Project Loom
Winner of the MicroStream... of the MicroStream... of the MicroStream... Winner of the MicroStream... 68/ AtFrofe s vor 3 Monaten 283 AL Vord Monaten
36 Aufrufe « vor 1 Monat 37 Aufrufe + vor 1 Monat 41 Aufrufe « vor 2 Monaten 54 Aufrufe « vor 2 Monaten

Morkukort lodon Habermin',” Covitio Ko Adambin prre i Mekuabert ioken Hebprmin," vt K
© e SR 54:32 MicroStream Hackathon Weekly Q&A | 10:05 & T 1:01:23 - c;,.wm & idonia 71:”}24 MicroStream Hackathon Weekly Q&A | 19:23

DevSecOps - Low Hanging MicroStream Hackathon Building Apps with Helidon Helidon + Micronaut Data: MicroStream Hackathon CIO of Tomorrow -

Fruits (German) Weekly Q&A | Edition 10... & MicroProfile Productivity without Bloat Weekly Q&A | Edition 9... Performance is Everything...

64 Aufrufe + vor 4 Monaten 19 Aufrufe + vor 4 Monaten 338 Aufrufe « vor 4 Monaten 379 Aufrufe + vor 4 Monaten 44 Aufrufe » vor 4 Monaten 54 Aufrufe » vor 4 Monaten

=) HACKATHON S =) HACKATHON WEBCAS

Mackus Kett Flosten Mabermbon ~ Chrivtion Kusmmed Wellgang Walgend Markus Kets Mackus Kett Flostan Mabermann Christion Kusmmed Tomas Langer Cheintian Kaemmel

MicroStream Hackathon Weekly Q&A | 35:44 [l ..o ce Grastum iiwidenio | 1744°53 il Microstream Hackathon Weekly QsA | 19:58 | .. R ke e GraslVM. s haiidenio 'y scro G g 1:19:53
MicroStream Hackathon GraalVM and MicroStream: MicroStream Hackathon Helidon DB Client Fast Ul Development with GraalVM: Native Image -
Weekly Q&A - Helidon |... Native Image & Ultra Fast... Weekly Q&A | Edition 7... 135 AUt~ Vor A Monaten RapidClipse (German) Cooking Guide

JCON2021 JAVAPRO

www.jcon.one

JCON-ONLINE 2021

OCTOBER 558

WWWw.jcon.one

=Fast Lane (&

JUG Gorlitz aufgepasst !!!

Jetzt konnt lhr kostenlos Online-Trainings im Wert von
1.699 EUR bei Fast Lane buchen. Einfach einen beliebigen
Kurs und Termin aussuchen und mit unserem Buchungs-

Code fiir 0,00 EUR buchen ...

=Fast Lane

Book Any Course for Free!

GraalVM - Online Training Live Quarkus - Online Training Live
GraalVM: Build Native Images 1Tag 890¢€ Quarkus & MicroProfile Fundamentals 2 Tage 1.690€
Quarkus & MicroProfile Advanced 2 Tage 1.890€

MicroStream - Online Training Live

MicroStream Fundamentals 2Tage 1.690€ Payara Micro - Online Training Live

MicroStream Advanced 2 Tage 1.890€ Payara Micro & MicroProfile Fundamentals 2 Tage 1.690€
Payara Micro & MicroProfile Advanced 2 Tage 1.890€

Helidon - Online Training Live

Helidon & MicroProfile Fundamentals 2Tage 1.690€ Micronaut - Online Training Live
Helidon MP & MicroProfile Advanced 2 Tage 1.890¢€ Micronaut Fundamentals 2Tage 1.690€
Helidon SE Advanced 2 Tage 1.890€ Micronaut Advanced 2 Tage 1.890€

Open Liberty - Online Training Live Spring Boot - Cnline Training Live
Open Liberty & MicroProfile Fundamentals 2Tage 1.690€ Spring Boot Cloud-Native - Fundamentals 2 Tage 1.690€
Open Liberty & MicroProfile Advanced 2Tage 1.890€ Spring Boot Cloud-Native - Advanced 2 Tage 1.890€

www.microservices.education

JUG Booking Code: TeQ-QyoBvsDJ

LinkedIn: markuskett |

Email: m.kett@microstream.one

