
What the CRaC...
SUPERFAST JVM STARTUP

Gerrit Grunwald | Developer Advocate | Azul | @hansolo_

ABOUTME.

JAVA IS
GREAT...

VIBRANT
COMMUNITY...

HUNDREDS OF
JUGs...

THOUSANDS OF
FOSS PROJECTS...

JAVA VIRTUAL
MACHINE

JAVA VIRTUAL
MACHINE

HOW DOES
IT WORK...

MyClass.java MyClass.class

SOURCE CODE COMPILER BYTE CODE

MyClass.class

BYTE CODE CLASS LOADER JVM MEMORY

JVM MEMORY

EXECUTION ENGINE

EXECUTION ENGINE

Interpreter C1 JIT
Compiler

(client)

C2 JIT
Compiler
(server)

Profiler

Garbage
Collector

EXECUTION ENGINE

Interpreter C1 JIT
Compiler

(client)

C2 JIT
Compiler
(server)

Profiler

Garbage
Collector

Tiered compilia=on

DEFAULT SINCE JDK 8

EXECUTION ENGINE

Interpreter C1 JIT
Compiler

(client)

C2 JIT
Compiler
(server)

Profiler

Garbage
Collector

Tiered compilia=on

DEFAULT SINCE JDK 8

INTERPRETER

Converts ByteCode into
instruction set of CPU

Detects hot spots by
counting method calls and

loop back edges

JVM

THRESHOLD
REACHED

(1000 in JDK 17)

Pass the "hot" code
to C1 JIT Compiler

JVM C1 JIT
COMPILER

Compiles code as quickly
as possible with low optimisation

C1 JIT
COMPILER

Compiles code as quickly
as possible with low optimisation

Profiles the running code
(detecting hot code)

JVM

THRESHOLD
REACHED

(5000 in JDK 17)

Pass the "hot" code
to C2 JIT Compiler

JVM C2 JIT
COMPILER

Compiles code with best
optimisation possible (slower)

EXECUTION
CYCLE

INTERPRETATIO
N

EXECUTION CYCLE
Slow

(Execution Level 0)

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE

Finding
"hot spots"

Slow
(Execution Level 0)

COMPILINGC1

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE

Fast compile,
low optimisation

(Execution Level 3)

Finding
"hot spots"

Slow
(Execution Level 0)

PRO
FIL

IN

G COMPILINGC1

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE

Finding
"hot code"

Fast compile,
low optimisation

(Execution Level 3)

Finding
"hot spots"

Slow
(Execution Level 0)

C
O
M
PI
LI
N
G
C
2

PRO
FIL

IN

G COMPILINGC1

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE

Finding
"hot code"

Fast compile,
low optimisation

(Execution Level 3)

Finding
"hot spots"

Slow
(Execution Level 0)

Slower compile,
high optimisation

(Execution Level 4)

DE
OP

TIM
ISAT

ION

C
O
M
PI
LI
N
G
C
2

PRO
FIL

IN

G COMPILINGC1

PR
O
FILIN

G

INTERPRETATIO
N

EXECUTION CYCLE
Can happen

(performance hit)

Slower compile,
high optimisation

(Execution Level 4)

Finding
"hot code"

Fast compile,
low optimisation

(Execution Level 3)

Finding
"hot spots"

Slow
(Execution Level 0)

DEOPTIMISATION

DEOPTIMISATION
e.g. BRANCH ANALYSIS

value > 9

bias = compute(value) bias = 1

Math.log10(bias + 99)

TRUE FALSE

int computeMagnitude(int value) {
 int bias;
 if (value > 9) {
 bias = compute(value);
 } else {
 bias = 1:
 }
 return Math.log10(bias + 99);
}

DEOPTIMISATION
e.g. BRANCH ANALYSIS

value > 9

bias = compute(value) bias = 1

Math.log10(bias + 99)

TRUE FALSE

int computeMagnitude(int value) {
 int bias;
 if (value > 9) {
 bias = compute(value);
 } else {
 bias = 1:
 }
 return Math.log10(bias + 99);
}

Value was never greater than 9

DEOPTIMISATION
e.g. BRANCH ANALYSIS

int computeMagnitude(int value) {
 if (value > 9) {
 uncommonTrap();
 }
 int bias = 1;
 return Math.log10(bias + 99);
}

value > 9

deoptimise Math.log10(1 + 99)

TRUE FALSE

DEOPTIMISATION
e.g. BRANCH ANALYSIS

int computeMagnitude(int value) {
 if (value > 9) {
 uncommonTrap();
 }
 int bias = 1;
 return Math.log10(bias + 99);
}

value > 9

deoptimise Math.log10(1 + 99)

TRUE FALSE

DEOPTIMISATION
e.g. BRANCH ANALYSIS

int computeMagnitude(int value) {
 if (value > 9) {
 uncommonTrap();
 }
 return Math.log10(100);
}

value > 9

deoptimise Math.log10(100)

TRUE FALSE

DEOPTIMISATION
e.g. BRANCH ANALYSIS

int computeMagnitude(int value) {
 if (value > 9) {
 uncommonTrap();
 }
 return 2;
}

value > 9

deoptimise return 2

TRUE FALSE

DEOPTIMISATION
e.g. BRANCH ANALYSIS

int computeMagnitude(int value) {
 if (value > 9) {
 uncommonTrap();
 }
 return 2;
}

value > 9

deoptimise return 2

TRUE FALSE

DEOPTIMISATION
e.g. BRANCH ANALYSIS

int computeMagnitude(int value) {
 if (value > 9) {
 uncommonTrap();
 }
 return 2;
}

value > 9

deoptimise return 2

TRUE FALSE

DEOPTIMISATION
e.g. BRANCH ANALYSIS

int computeMagnitude(int value) {
 int bias;
 if (value > 9) {
 bias = compute(value);
 } else {
 bias = 1:
 }
 return Math.log10(bias + 99);
}

INTERPRETER C1 C2

value > 9

bias = compute(value) bias = 1

Math.log10(bias + 99)

TRUE FALSE

JVM PERFORMANCE GRAPH

GarbageCollector pauses

Deoptimisations

Performance

Interpreter C1 Compiler C2 Compiler

JVM
STARTUP

JVM STARTUP

JVM

Load & Initialize

Optimization

FAST

JVM START

JVM STARTUP

JVM

Load & Initialize

Optimization

JVM

Load application classes

Initialize all resources

Kick off application specific logic

Optimization

FAST TAKES A BIT

JVM START APPLICATION START

JVM STARTUP

JVM

Load & Initialize

Optimization

JVM

Load application classes

Initialize all resources

Kick off application specific logic

Optimization

FAST TAKES A BIT

Generally referred to as JVM Startup
(Time to first response)

JVM START APPLICATION START

JVM STARTUP

JVM

Load & Initialize

Optimization

JVM

Load application classes

Initialize all resources

Kick off application specific logic

Optimization

JVM

Optimizing (Compile/Decompile)

FAST TAKES A BIT TAKES SOME TIME

Generally referred to as JVM Startup
(Time to first response)

App

Apply application specific workloads

JVM START APPLICATION START APPLICATION WARMUP

JVM STARTUP

JVM

Load & Initialize

Optimization

JVM

Load application classes

Initialize all resources

Kick off application specific logic

Optimization

JVM

Optimizing (Compile/Decompile)

FAST TAKES A BIT TAKES SOME TIME

Generally referred to as JVM Startup
(Time to first response)

Generally referred to as JVM Warmup
(Time to n operations)

App

Apply application specific workloads

JVM START APPLICATION START APPLICATION WARMUP

THAT'S
GREAT...

...BUT...

...IT TAKES
TIME !

MICROSERVICE
ENVIRONMENT

MICROSERVICE ENVIRONMENT

FIRST RUN

JVM STARTUP

Performance

SECOND RUN

JVM STARTUP

Performance

THIRD RUN

JVM STARTUP

Performance

WOULDN'T IT BE GREAT...?
FIRST RUN

JVM STARTUP

Performance

SECOND RUN

NO STARTUP OVERHEAD

Performance

THIRD RUN

NO STARTUP OVERHEAD

Performance

SOLUTIONS...?

CLASS DATA
SHARING

WHAT ABOUT CDS?
Dump internal class representations into file

WHAT ABOUT CDS?
Dump internal class representations into file
Shared on each JVM start (CDS)

WHAT ABOUT CDS?
Dump internal class representations into file
Shared on each JVM start (CDS)
No optimization or hotspot detection

WHAT ABOUT CDS?
Dump internal class representations into file
Shared on each JVM start (CDS)
No optimization or hotspot detection
Only reduces class loading time

WHAT ABOUT CDS?
Dump internal class representations into file
Shared on each JVM start (CDS)
No optimization or hotspot detection
Only reduces class loading time
Startup up to 2 seconds faster

WHAT ABOUT CDS?
Dump internal class representations into file
Shared on each JVM start (CDS)
No optimization or hotspot detection
Only reduces class loading time
Startup up to 2 seconds faster
Good info from Ionut Balosin

MyClass.class

BYTE CODE CLASS LOADER JVM MEMORY

CDS

AHEAD OF TIME
COMPILATION

WHY NOT USE AOT?
No interpreting bytecodes

WHY NOT USE AOT?
No interpreting bytecodes
No analysis of hotspots

WHY NOT USE AOT?
No interpreting bytecodes
No analysis of hotspots
No runtime compilation of code

WHY NOT USE AOT?
No interpreting bytecodes
No analysis of hotspots
No runtime compilation of code
Start at 'full speed', straight away

WHY NOT USE AOT?
No interpreting bytecodes
No analysis of hotspots
No runtime compilation of code
Start at 'full speed', straight away
GraalVM native image does that

PROBLEM SOLVED...?

NOT SO FAST...
AOT is, by definition, static

NOT SO FAST...
AOT is, by definition, static
Code is compiled before it is run

NOT SO FAST...
AOT is, by definition, static
Code is compiled before it is run
Compiler has no knowledge of how the
code will actually run

NOT SO FAST...
AOT is, by definition, static
Code is compiled before it is run
Compiler has no knowledge of how the
code will actually run
Profile Guided Optimisation (PGO)
can partially help

JVM PERFORMANCE GRAPH

AOT Compiled Code

AOT Compiled Code with Profile Guided Optimisation
(not in GraalVM Community)

Needs to run once for profiling

Performance

JVM PERFORMANCE

https://www.baeldung.com/spring-boot-vs-quarkus

https://www.baeldung.com/spring-boot-vs-quarkus

JVM PERFORMANCE

https://www.baeldung.com/spring-boot-vs-quarkus

JVM NATIVE IMAGE

https://www.baeldung.com/spring-boot-vs-quarkus

JVM PERFORMANCE

https://www.baeldung.com/spring-boot-vs-quarkus

74%100% 53%100%

JVM NATIVE IMAGE

https://www.baeldung.com/spring-boot-vs-quarkus

AOT VS JIT
Limited use of method inlining

No runtime bytecode generation

Reflection is possible but complicated

Unable to use speculative optimisations

Must be compiled for least common denominator

Overall performance will typically be lower

Deployed env != Development env.

'Full speed' from the start

No overhead to compile code at runtime

Small memory footprint

Can use aggressive method inlining at runtime

Can use runtime bytecode generation

Reflection is simple

Can use speculative optimisations

Can even optimise for Haswell, Skylake, Ice Lake etc.

Overall performance will typically be higher

Deployed env. == Development env.

Requires more time to start up (but will be faster)

Overhead to compile code at runtime

Larger memory footprint

AOT JIT

JIT DISADVANTAGES

Requires more time to start up
(requires many slow operations to happen before optimisation and faster execution can happen)

JIT DISADVANTAGES

Requires more time to start up
(requires many slow operations to happen before optimisation and faster execution can happen)
CPU overhead to compile code at runtime

JIT DISADVANTAGES

Requires more time to start up
(requires many slow operations to happen before optimisation and faster execution can happen)
CPU overhead to compile code at runtime
Larger memory footprint

AZUL PRIME
READY NOW

READY NOW
Part of Azul Prime JVM

READY NOW
Part of Azul Prime JVM
Creates profile at runtime (optimizations and constraints)

READY NOW
Part of Azul Prime JVM
Creates profile at runtime (optimizations and constraints)
Compile everything from the profile (at startup)

READY NOW
Part of Azul Prime JVM
Creates profile at runtime (optimizations and constraints)
Compile everything from the profile (at startup)
JVM can further optimize

READY NOW

Interpreter

Prime will store all optimizations & constraints to ReadyNow profile

FIRST STARTUP...

READY NOW

Interpreter

Profiling

Prime will store all optimizations & constraints to ReadyNow profile

FIRST STARTUP...

READY NOW

Interpreter

Profiling

C1 JIT
Compiler

Prime will store all optimizations & constraints to ReadyNow profile

FIRST STARTUP...

READY NOW

Interpreter

Profiling

C1 JIT
Compiler

Profiling

Prime will store all optimizations & constraints to ReadyNow profile

FIRST STARTUP...

READY NOW

Interpreter

Profiling

C1 JIT
Compiler

Profiling

Falcon JIT
Compiler

Prime will store all optimizations & constraints to ReadyNow profile

FIRST STARTUP...

READY NOW

Interpreter

Profiling

C1 JIT
Compiler

Profiling

Falcon JIT
Compiler

Profiling

Prime will store all optimizations & constraints to ReadyNow profile

FIRST STARTUP...

READY NOW

Falcon JIT
CompilerNo interpretation, C1 compilation and deoptimisation

Everything in the ReadyNow profile will directly be compiled

NEXT STARTUP...

A DIFFERENT
APPROACH

CRIU
CHECKPOINT RESTORE IN USERSPACE

Linux project

CRIU

Linux project

Part of kernel >= 3.11 (2013)

CRIU

Linux project

Part of kernel >= 3.11 (2013)

Freeze a running container/application

CRIU

Linux project

Part of kernel >= 3.11 (2013)

Freeze a running container/application

Checkpoint its state to disk

CRIU

Linux project

Part of kernel >= 3.11 (2013)

Freeze a running container/application

Checkpoint its state to disk

Restore the container/application from the saved data.

CRIU

Linux project

Part of kernel >= 3.11 (2013)

Freeze a running container/application

Checkpoint its state to disk

Restore the container/application from the saved data.

Used by/integrated in OpenVZ, LXC/LXD, Docker,
Podman and others

CRIU

Heavily relies on /proc file system

CRIU

Heavily relies on /proc file system

It can checkpoint:

Processes and threads

Application memory, memory mapped files and shared memory

Open files, pipes and FIFOs

Sockets

Interprocess communication channels

Timers and signals

CRIU

Heavily relies on /proc file system

It can checkpoint:

Processes and threads

Application memory, memory mapped files and shared memory

Open files, pipes and FIFOs

Sockets

Interprocess communication channels

Timers and signals

Can rebuild TCP connection from one side only

CRIU

CRIU
CHALLENGES

Restart from saved state on another machine
(open files, shared memory etc.)

CRIU CHALLENGES

Restart from saved state on another machine
(open files, shared memory etc.)

Start multiple instances of same state on same machine
(PID will be restored which will lead to problems)

CRIU CHALLENGES

Restart from saved state on another machine
(open files, shared memory etc.)

Start multiple instances of same state on same machine
(PID will be restored which will lead to problems)

A Java Virtual Machine would assume it was continuing its tasks
(very difficult to use effectively, e.g. running applications might have open files etc.)

CRIU CHALLENGES

CRaC
Coordinated Restore at Checkpoint

RUNNING APPLICATION

Aware of checkpoint
being created

RUNNING APPLICATION

Aware of restore
happening

CRaC
A way to solve the problems when checkpointing a JVM

(e.g. no open files, sockets etc.)

CRaC
Comes with a simple API

CRaC
Comes with a simple API

Creates checkpoints using code or jcmd

CRaC
Comes with a simple API

Creates checkpoints using code or jcmd

Throws CheckpointException
(in case of open files/sockets)

CRaC
Comes with a simple API

Creates checkpoints using code or jcmd

Throws CheckpointException
(in case of open files/sockets)

Heap is cleaned, compacted
(using JVM safepoint mechanism -> JVM is in a safe state)

CRaC

START

>java -XX:CRaCCheckpointTo=PATH -jar app.jar

RESTORE

>java -XX:CRaCRestoreFrom=PATH

Additional command line parameters

openjdk.org/projects/crac

Lead by Anton Kozlov (Azul)

http://openjdk.org/projects/crac

CRaC API

<<interface>>

Resource

beforeCheckpoint()

afterRestore()

Resource interface (can be notified about a
Checkpoint and Restore)

CRaC API

<<interface>>

Resource

beforeCheckpoint()

afterRestore()

Resource interface (can be notified about a
Checkpoint and Restore)

Classes in application code
implement the Resource interface

CRaC API

<<interface>>

Resource

beforeCheckpoint()

afterRestore()

Resource interface (can be notified about a
Checkpoint and Restore)

Classes in application code
implement the Resource interface

Application receives callbacks
during checkpointing and restoring

CRaC API

<<interface>>

Resource

beforeCheckpoint()

afterRestore()

Resource interface (can be notified about a
Checkpoint and Restore)

Classes in application code
implement the Resource interface

Application receives callbacks
during checkpointing and restoring

Makes it possible to close/restore
resources (e.g. open files, sockets)

CRaC API

Resource objects need to be registered with a Context so that they
can receive notifications

CRaC API

Resource objects need to be registered with a Context so that they
can receive notifications

There is a global Context accessible via the static method
Core.getGlobalContext()

CRaC API

<<interface>>

Resource

beforeCheckpoint()

afterRestore()

Core

getGlobalContext()
<<abstract>>

Context

register(Resource)

CRaC API

CREATING
A

CHECKPOINT

CREATING A CHECKPOINT
FROM THE COMMAND LINE:

>jcmd YOUR_AWESOME.jar JDK.checkpoint

>jcmd PID JDK.checkpoint

Core.checkpointRestore();

FROM THE CODE:

CREATING A CHECKPOINT

WHEN ?

Start your app with -XX:+PrintCompilation

WHEN TO CHECKPOINT ?

Start your app with -XX:+PrintCompilation
Apply typical workload to your app

WHEN TO CHECKPOINT ?

Start your app with -XX:+PrintCompilation
Apply typical workload to your app
Observe the moment the compilations are
ramped down

WHEN TO CHECKPOINT ?

Start your app with -XX:+PrintCompilation
Apply typical workload to your app
Observe the moment the compilations are
ramped down
Create the checkpoint

WHEN TO CHECKPOINT ?

TYPICAL
USAGE

TYPICAL USAGE...
Run app in a docker container

Run app in a docker container
Create checkpoint (store in container or external volume)

TYPICAL USAGE...

Run app in a docker container
Create checkpoint (store in container or external volume)
Commit the state of container (only if checkpoint in container)

TYPICAL USAGE...

Run app in a docker container
Create checkpoint (store in container or external volume)
Commit the state of container (only if checkpoint in container)
Start the container (point jvm to container or external volume)

TYPICAL USAGE...

LINUX ONLY
X64 / AARCH64

WINDOWS
MACOS ?

ORG.CRAC

Designed to provide smooth CRaC adoption

ORG.CRAC

Designed to provide smooth CRaC adoption

Total mirror of jdk.crac api at compile-time

ORG.CRAC

Designed to provide smooth CRaC adoption

Total mirror of jdk.crac api at compile-time

Can be used with any OpenJDK implementation

ORG.CRAC

Designed to provide smooth CRaC adoption

Total mirror of jdk.crac api at compile-time

Can be used with any OpenJDK implementation

Detects CRaC implementation at runtime

ORG.CRAC

Designed to provide smooth CRaC adoption

Total mirror of jdk.crac api at compile-time

Can be used with any OpenJDK implementation

Detects CRaC implementation at runtime

No CRaC support -> won't call CRaC specific code

ORG.CRAC

Designed to provide smooth CRaC adoption

Total mirror of jdk.crac api at compile-time

Can be used with any OpenJDK implementation

Detects CRaC implementation at runtime

No CRaC support -> won't call CRaC specific code

CRaC support -> will forward all CRaC specific calls to jdk.crac

ORG.CRAC

<dependency>

 <groupId>org.crac</groupId>

 <artifactId>crac</artifactId>

 <version>1.4.0</version>

</dependency>

implementation 'org.crac:crac:1.4.0'

ORG.CRAC

github.com/CRaC/org.crac

ORG.CRAC

http://github.com/CRaC/org.crac

COMPATIBILITY

COMPATIBILITY...
Upgrade (Haswell -> restore: Ice Lake, no problem)

Upgrade (Haswell -> restore: Ice Lake, no problem)

Downgrade (Ice Lake -> restore: Haswell, problematic)

COMPATIBILITY...

Upgrade (Haswell -> restore: Ice Lake, no problem)

Downgrade (Ice Lake -> restore: Haswell, problematic)
Solved in CRaC by specific flag (little drop in performance)

COMPATIBILITY...

Upgrade (Haswell -> restore: Ice Lake, no problem)

Downgrade (Ice Lake -> restore: Haswell, problematic)
Solved in CRaC by specific flag (little drop in performance)
Node groups stick to same cpu architecture

COMPATIBILITY...

Upgrade (Haswell -> restore: Ice Lake, no problem)

Downgrade (Ice Lake -> restore: Haswell, problematic)
Solved in CRaC by specific flag (little drop in performance)
Node groups stick to same cpu architecture
Virtualized Linux environments work on all
OS's (as long as cpu architecture is x64/aarch64)

COMPATIBILITY...

FRAMEWORK
SUPPORT ?

FRAMEWORK SUPPORT ?
Micronaut (good support)

FRAMEWORK SUPPORT ?
Micronaut (good support)
Quarkus (rudimentary support)

FRAMEWORK SUPPORT ?
Micronaut (good support)
Quarkus (rudimentary support)
Spring (will get support with Spring 6.1)

DEMO...

SPRINGBOOT 3.2
PETCLINIC

NORMAL
START

> java -jar spring-petclinic-3.2.0.jar

NORMAL START

START APPLICATION

> java -jar spring-petclinic-3.2.0.jar

 |\ _,,,--,,_
 /,`.-'`' ._ \-;;,_
 _______ __|,4-))_ .;.(__`'-'__ ___ __ _ ___ _______
 | | '---''(_/._)-'(__) | | | | | | | | |
 | _ | ___|_ _| | | | | |_| | | | __ _ _
 | |_| | |___ | | | | | | | | | | \ \ \ \
 | ___| ___| | | | _| |___| | _ | | _| \ \ \ \
 | | | |___ | | | |_| | | | | | | |_))))
 |___| |_______| |___| |_______|_______|___|_| |__|___|_______| / / / /
 ==/_/_/_/

:: Built with Spring Boot :: 3.2.0

...

2023-11-29T11:57:27.579+01:00 INFO 3839 --- [main] o.s.d.j.r.query.QueryEnhancerFactory : Hibernate is in classpath; If
applicable, HQL parser will be used.
2023-11-29T11:57:28.549+01:00 INFO 3839 --- [main] o.s.b.a.e.web.EndpointLinksResolver : Exposing 13 endpoint(s) beneath
base path '/actuator'
2023-11-29T11:57:28.625+01:00 INFO 3839 --- [main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8080 (http)
with context path ''
2023-11-29T11:57:28.639+01:00 INFO 3839 --- [main] o.s.s.petclinic.PetClinicApplication : Started PetClinicApplication in
4.619 seconds (process running for 5.051)
Started up in 4997ms with PID: 3839

NORMAL START

START FROM
AUTO

CHECKPOINT

AUTO CHECKPOINT
Feature in SpringBoot 3.2

AUTO CHECKPOINT
Feature in SpringBoot 3.2

Start with -Dspring.context.checkpoint=onRefresh

AUTO CHECKPOINT
Feature in SpringBoot 3.2

Start with -Dspring.context.checkpoint=onRefresh

Creates automatic checkpoint after start of
SpringBoot framework

AUTO CHECKPOINT
Feature in SpringBoot 3.2

Start with -Dspring.context.checkpoint=onRefresh

Creates automatic checkpoint after start of
SpringBoot framework

Right before the application will be started

> java -Dspring.context.checkpoint=onRefresh -XX:CRaCCheckpointTo=./tmp_auto_checkpoint -jar spring-petclinic-3.2.0.jar

AUTO CHECKPOINT

START APPLICATION AND CREATE CHECKPOINT

> java -Dspring.context.checkpoint=onRefresh -XX:CRaCCheckpointTo=./tmp_auto_checkpoint -jar spring-petclinic-3.2.0.jar

> java -XX:CRaCRestoreFrom=./tmp_auto_checkpoint

2023-11-29T12:01:37.698+01:00 WARN 15261 --- [l-1 housekeeper] com.zaxxer.hikari.pool.HikariPool : HikariPool-1 - Thread starvation
or clock leap detected (housekeeper delta=1h26m17s198ms377µs333ns).
2023-11-29T12:01:37.790+01:00 INFO 15261 --- [main] o.s.c.support.DefaultLifecycleProcessor : Restarting Spring-managed
lifecycle beans after JVM restore
2023-11-29T12:01:37.811+01:00 INFO 15261 --- [main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8080 (http)
with context path ''
2023-11-29T12:01:37.834+01:00 INFO 15261 --- [main] o.s.s.petclinic.PetClinicApplication : Restored PetClinicApplication in
0.956 seconds (process running for 0.958)
Started up in 265ms with PID: 15261

AUTO CHECKPOINT

RESTORE FROM CHECKPOINT

START FROM
MANUAL

CHECKPOINT

MANUAL CHECKPOINT
Start application with -XX:CracCheckpointTo=Path

MANUAL CHECKPOINT
Start application with -XX:CracCheckpointTo=Path

Warm up your application

MANUAL CHECKPOINT
Start application with -XX:CracCheckpointTo=Path

Warm up your application

Create checkpoint using jcmd

MANUAL CHECKPOINT
Start application with -XX:CracCheckpointTo=Path

Warm up your application

Create checkpoint using jcmd

Checkpoint now also contains application

> java -XX:CRaCCheckpointTo=./tmp_manual_checkpoint -jar spring-petclinic-3.2.0.jar

MANUAL CHECKPOINT

START APPLICATION

> java -XX:CRaCCheckpointTo=./tmp_manual_checkpoint -jar spring-petclinic-3.2.0.jar

...

2023-11-29T11:57:28.625+01:00 INFO 3839 --- [main] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8080 (http)
with context path ''
2023-11-29T11:57:28.639+01:00 INFO 3839 --- [main] o.s.s.petclinic.PetClinicApplication : Started PetClinicApplication in
4.619 seconds (process running for 5.051)
Started up in 4997ms with PID: 3839

MANUAL CHECKPOINT

> jcmd 3839 JDK.checkpoint

CREATE CHECKPOINT

> java -XX:CRaCRestoreFrom=./tmp_manual_checkpoint

MANUAL CHECKPOINT

RESTORE FROM CHECKPOINT

> java -XX:CRaCRestoreFrom=./tmp_manual_checkpoint

2023-11-29T12:04:32.626+01:00 WARN 15512 --- [l-1 housekeeper] com.zaxxer.hikari.pool.HikariPool : HikariPool-1 - Thread starvation
or clock leap detected (housekeeper delta=1h28m32s17ms487µs256ns).
2023-11-29T12:04:32.634+01:00 INFO 15512 --- [Attach Listener] o.s.c.support.DefaultLifecycleProcessor : Restarting Spring-managed
lifecycle beans after JVM restore
2023-11-29T12:04:32.642+01:00 INFO 15512 --- [Attach Listener] o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port 8080 (http)
with context path ''
2023-11-29T12:04:32.644+01:00 INFO 15512 --- [Attach Listener] o.s.c.support.DefaultLifecycleProcessor : Spring-managed lifecycle restart
completed (restored JVM running for 59 ms)

MANUAL CHECKPOINT

https://github.com/
HanSolo/spring-petclinic

https://github.com/HanSolo/spring-petclinic
https://github.com/HanSolo/spring-petclinic

OK...BUT

HOW GOOD IS IT...?

Time to first opera5on

Spring-Boot

Micronaut

Quarkus

xml-transform

[ms]

0 1250 2500 3750 5000

4,352

980

1,001

3,898

OpenJDK

Time to first opera5on

Spring-Boot

Micronaut

Quarkus

xml-transform

[ms]

0 1250 2500 3750 5000

 53

 33

 46

 38

4,352

980

1,001

3,898

OpenJDK OpenJDK on CRaC

SpringBoot 3.2 PetClinic Demo

SpringBoot

[ms]

0 1250 2500 3750 5000

71ms

 392ms

4,099ms4 099 msStandard

SpringBoot 3.2 PetClinic Demo

SpringBoot

[ms]

0 1250 2500 3750 5000

71ms

 392ms

4,099ms

Automatic
checkpoint

at start

71 ms

392 ms

4 099 msStandard

SpringBoot 3.2 PetClinic Demo

SpringBoot

[ms]

0 1250 2500 3750 5000

71ms

 392ms

4,099ms

Automatic
checkpoint

at start

71 ms

392 ms

4 099 msStandard

Manual
checkpoint

THE
FUTURE...

THE FUTURE...
Non privileged mode

THE FUTURE...
Non privileged mode

Encryption and compression*

*already works

THE FUTURE...
Non privileged mode

Encryption and compression*
Cloud native storage

*already works

THE FUTURE...
Non privileged mode

Encryption and compression*
Cloud native storage
Checkpoint after restore

*already works

THE FUTURE...
Non privileged mode

Encryption and compression*
Cloud native storage
Checkpoint after restore
Full support on Windows and MacOS

*already works

SUMMARY...

SUMMARY...
CRaC is a way to pause and restore a JVM based application

CRaC is a way to pause and restore a JVM based application

It doesn't require a closed world as with a native image

SUMMARY...

CRaC is a way to pause and restore a JVM based application

It doesn't require a closed world as with a native image

Extremely fast time to full performance level

SUMMARY...

CRaC is a way to pause and restore a JVM based application

It doesn't require a closed world as with a native image

Extremely fast time to full performance level

No need for hotspot identification, method compiles, recompiles
and deoptimisations

SUMMARY...

CRaC is a way to pause and restore a JVM based application

It doesn't require a closed world as with a native image

Extremely fast time to full performance level

No need for hotspot identification, method compiles, recompiles
and deoptimisations

Improved throughput from start

SUMMARY...

CRaC is a way to pause and restore a JVM based application

It doesn't require a closed world as with a native image

Extremely fast time to full performance level

No need for hotspot identification, method compiles, recompiles
and deoptimisations

Improved throughput from start

CRaC is an OpenJDK project

SUMMARY...

CRaC is a way to pause and restore a JVM based application

It doesn't require a closed world as with a native image

Extremely fast time to full performance level

No need for hotspot identification, method compiles, recompiles
and deoptimisations

Improved throughput from start

CRaC is an OpenJDK project

CRaC can save infrastructure cost

SUMMARY...

C
PU

 U
til

iz
at

io
n

0 %

25 %

50 %

75 %

100 %

Time

INFRASTRUCTURE COST

Checkpoint

JVM startup time

Interpretation +
Compilation Overhead

Start after restore

Eliminates startup time
Eliminates cpu overhead

WANNA
KNOW MORE ?

github.com/CRaC

INFORMATION...

http://github.com/CRaC

azul.com
JDK 17.0.8 LINUX X64 / AARCH64

DOWNLOAD...

https://www.azul.com/downloads/?package=jdk-crac#zulu

DOCUMENTATION...

THANK
YOU

